购彩大厅用户注册- - (中国)百度热搜
购彩大厅用户注册2023-11-09

购彩大厅用户注册

俄国防部:俄军将进行大规模调整 扩军至150万人******

  中新网1月17日电 综合外媒17日报道 ,俄国防部新闻处发布消息称,2023年至2026年 ,俄罗斯军队将实现大规模调整 ,其中包括将人数增至150万人。俄罗斯国防部长绍伊古还称,将特别重视招募合同兵 ,并确保及时供应技术装备,以及增加训练场。

    资料图:当地时间2022年月9日,俄罗斯在首都莫斯科红场举行纪念伟大卫国战争胜利77周年阅兵式。共有1.1万名军人 、131件现代化武器和军事技术装备在红场接受了检阅 。 中新社记者 田冰 摄  资料图:当地时间2022年5月9日 ,俄罗斯在首都莫斯科红场举行纪念伟大卫国战争胜利77周年阅兵式。共有1.1万名军人、131件现代化武器和军事技术装备在红场接受了检阅。 中新社记者 田冰 摄

  俄国防部宣布将扩军至150万人

  据俄罗斯卫星网报道,俄国防部新闻处发布消息称,俄罗斯国防部长绍伊古召开会议,涉及执行俄总统普京关于将武装力量人数增至150万名军人决定的问题。

  消息指出 ,武装力量组成的大规模调整、人数增加 、俄联邦军事行政区划调整等,均将在2023年至2026年期间进行。

  俄国防部称,与俄武装力量扩军至150万名军人同步进行 的还有武器供应 、基础设施建设和军队保障 。绍伊古表示,为了确保增加俄武装力量人数 ,将特别重视招募合同兵 ,并确保及时供应技术装备,以及增加训练场。

  据此前报道,俄总统普京曾于2022年8月25日签署关于俄罗斯武装力量扩军 的总统令 ,并于2023年1月1日正式生效 。根据该法令 ,预计将俄武装力量编制增加13.7万人,俄军现役军人总人数将超过115万 。

图片来源:《莫斯科时报》报道截图

  俄防长强调给予军队全面保障

  此外 ,俄罗斯国防部17日还发表声明说,俄防长绍伊古视察了部署在乌克兰某处的“东方”集团总部 。声明未说明这一总部 的具体地点 。

  俄罗斯卫星网称 ,绍伊古听取了集团司令鲁斯塔姆·穆拉多夫关于当前情况和军队集团行动 的汇报 ,还听取了军团和兵团司令关于在主要方向上“战斗任务”完成进程的介绍 。

  绍伊古特别提出 ,要对特别军事行动动用 的军队给予全面保障。他表示,“要为特别军事行动动用的军队组织全面保障 ,为野外条件工作的人员组织野战筑城并创造安全的住宿环境 ,组织医疗和后勤 的工作 。”

  另据《莫斯科时报》报道,在一段将近三分钟、大部分声音被静音的视频中 ,绍伊古身着作战服 ,参加了视频会议 ,还向几名军人颁发了奖章。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖 、物理学奖的高冷 ,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物 ,很有可能就来自他们的贡献 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注 ?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西 、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家) 。

  一 、夏普莱斯:两次获得诺贝尔化学奖

  2001年 ,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖 ,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖 的「点击化学」 ,同样与药物合成有关 。

  1998年 ,已经 是手性催化领军人物 的夏普莱斯,发现了传统生物药物合成的一个弊端 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?

  过去200年 ,人们主要在自然界植物 、动物,以及微生物中能寻找能发挥药物作用 的成分 ,然后尽可能地人工构建相同分子,以用作药物 。

  虽然相关药物 的工业化 ,让现代医学取得了巨大 的成功 。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家 ,的确能够在实验室构造出令人惊叹 的分子,但要实现工业化几乎不可能。

  有机催化 是一个复杂 的过程,涉及到诸多的步骤 。

  任何一个步骤都可能产生或多或少 的副产品 。在实验过程中 ,必须不断耗费成本去去除这些副产品 。

  不仅成本高 ,这还是一个极其费时的过程 ,甚至最后可能还得不到理想 的产物 。

  为了解决这些问题 ,夏普莱斯凭借过人智慧 ,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就 的,经过三年的沉淀 ,到了2001年 ,获得诺奖 的这一年,夏普莱斯团队才完善了「点击化学」 。

  点击化学又被称为“链接化学”,实质上 是通过链接各种小分子 ,来合成复杂的大分子。

  夏普莱斯之所以有这样 的构想 ,其实也 是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性 是远远超过人类的,她总是会用一些精巧 的催化剂 ,利用复杂的反应完成合成过程 ,人类的技术比起来 ,实在是太粗糙简单了 。

  大自然 的一些催化过程,人类几乎是不可能完成 的 。

  一些药物研发 ,到了最后却破产了,恰恰是卡在了大自然设下 的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然 ,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键 ,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难 。但直接用大自然现有 的 ,找到一个办法把它们拼接起来 ,同样可以构建复杂的化合物 。

  其实这种方法,就像搭积木或搭乐高一样 ,先组装好固定 的模块(甚至点击化学可能不需要自己组装模块 ,直接用大自然现成的),然后再想一个方法把模块拼接起来 。

  诺贝尔平台给三位化学家的配图 ,可谓 是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法 。

  他的最终目标, 是开发一套能不断扩展 的模块 ,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」 的工作 ,建立在严格 的实验标准上:

  反应必须是模块化 ,应用范围广泛

  具有非常高的产量

  仅生成无害 的副产品

  反应有很强 的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好 是水),且容易移除

  可简单分离 ,或者使用结晶或蒸馏等非色谱方法 ,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子 ,并在2002年的一篇论文[7]中指出 ,叠氮化物和炔烃之间 的铜催化反应 是能在水中进行 的可靠反应 ,化学家可以利用这个反应,轻松地连接不同的分子 。

  他认为这个反应的潜力 是巨大 的 ,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐 ,在他发表这篇论文的这一年 ,另外一位化学家在这方面有了关键性的发现 。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应 的研究发现之前 ,其实与“点击化学”并没有直接的联系。他反而 是一个在“传统”药物研发上,走得很深 的一位科学家。

  为了寻找潜在药物及相关方法 ,他构建了巨大的分子库 ,囊括了数十万种不同的化合物。

  他日积月累地不断筛选 ,意图筛选出可用 的药物 。

  在一次利用铜离子催化炔与酰基卤化物反应时 ,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应 ,成了一个环状结构——三唑 。

  三唑 是各类药品 、染料 ,以及农业化学品关键成分的化学构件。过去 的研发,生产三唑 的过程中,总 是会产生大量 的副产品 。而这个意外过程,在铜离子 的控制下,竟然没有副产品产生。

  2002年 ,梅尔达尔发表了相关论文 。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇 ,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition) ,成为了医药生物领域应用最为广泛 的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注?

  三、贝尔托齐西 :把点击化学运用在人体内

  不过,把点击化学进一步升华的却 是美国科学家——卡罗琳·贝尔托西 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时 ,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键 的问题,把“点击化学”运用到人体之内 ,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便 是所谓 的生物正交反应 ,即活细胞化学修饰 ,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门 ,其实最开始也和“点击化学”无关 。

  20世纪90年代 ,随着分子生物学 的爆发式发展 ,基因和蛋白质地图 的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面 ,发挥着重要作用 的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖 的功能就用了整整四年的时间 。

  后来,受到一位德国科学家 的启发 ,她打算在聚糖上面添加可识别 的化学手柄来识别它们 的结构。

  由于要在人体中反应且不影响人体 ,所以这种手柄必须对所有 的东西都不敏感,不与细胞内 的任何其他物质发生反应。

  经过翻阅大量文献 ,卡罗琳·贝尔托西最终找到了最佳 的化学手柄。

  巧合 是 ,这个最佳化学手柄 ,正是一种叠氮化物,点击化学 的灵魂 。通过叠氮化物把荧光物质与细胞聚糖结合起来 ,便可以很好地分析聚糖的结构 。

  虽然贝尔托西的研究成果已经 是划时代 的,但她依旧不满意,因为叠氮化物的反应速度很不够理想 。

  就在这时 ,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度 ,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与 ,还能加快反应速度 的方式 。

  大量翻阅文献后 ,贝尔托西惊讶地发现,早在1961年 ,就有研究发现当炔被强迫形成一个环状化学结构后 ,与叠氮化物便会以爆炸式地进行反应 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注 ?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件 。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学 ,有哪些信息值得关注 ?

  贝尔托西不仅绘制了相应 的细胞聚糖图谱 ,更是运用到了肿瘤领域 。

  在肿瘤 的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害 。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖 的药物 。这种药物进入人体后,会靶向破坏肿瘤聚糖 ,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」 的翻译 ,看起来很晦涩难懂,但其实背后是很朴素的原理 。一个是如同卡扣般 的拼接 ,一个是可以直接在人体内 的运用 。

「  点击化学」和「生物正交化学」都还 是一个很年轻 的领域 ,或许对人类未来还有更加深远 的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

中国网客户端

国家重点新闻网站,9语种权威发布

购彩大厅用户注册地图